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The method of Lytton, updated from that of Sells, for solving the Euler equations governing 
steady inviscid supercritical flow past an aerofoil, is described. Roe’s “Superbee” algorithm is 
incorporated into an explicit, flux-difference-splitting, non-time-split sequence of one-dimen- 
sional spatial operators in local-timestep mode. Results are presented for a parametric study 
of one supercritical case, as a check on the consistency of the method. The ability of the 
method to compute the flow over a bump on a channel wall is demonstrated. Results from the 
computation of a supercritical flow with recirculation are also shown. ‘rI, 1987 Acadrm?c Prsri. Enc. 

1. INTRODUCTION 

Remarkable advances in numerical techniques and computer codes for solving 
the Euler equations of steady inviscid compressible flow have been made in the last 
15 years, and continue to be made. The situation up to !981 has been summarized 
by Hall [.5], who also pointed out some of the features in current codes which arc 
unsatisfactory but difficult to improve, such as the poor resolution of shocks which 
lie obliquely across a computing grid. Since that time, details have appeared of a 
fast Runge-Kutta time-stepping scheme developed by Jameson et ui. [S], and a fa.s: 
multigrid-type scheme has been outlined by Ni [ 1 l], which has been takrn con- 
siderably further by Hall [6]. A well-tried fast implicit method due to Pulliam and 
Steger [14] has been successfully extended to unsteady flow, both two- and three- 
dimensional3 by Deborah Salmond [25]. 

The method to be described here is a flux-difference-splitting method, following 
on from the author’s earlier “Sells’ method’ [26], which is summarized by Roe 
[ZO], Some other features of Sells method have been retained: 

(ij The method uses a “finite-volume” grid, which may be irregular. rather 
than a grid derived by an analytical transformation or a numerically calculated 

* Formerly C. C. L. Sells. 
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conformal representation. The use of an irregular grid is a disadvantage for two- 
dimensional flows, since irregular grids tend to produce larger discretization errors 
than regular grids. However, the ability to use an irregular grid would almost cer- 
tainly be an advantage in an extension to three dimensions, for which it is difficult 
to construct grids with smooth variation covering corner regions of arbitrary angle. 

(ii) The method uses an V” grid, in which the cell rows are re-entrant and 
run right around the aerofoil. For the same number of cells on the aerofoil, this 
requires less computer storage than a “C” grid, in which cell rows start and finish 
far downstream, encircling the aerofoil like a horseshoe. However, the technique 
can be adapted to “C” grids. if so desired. 

(iii) In transonic flow, the use of difference equations with fixed coeflicients 
leads to shock representations with undulations (“wiggles”) on either side. Some 
internal checks, followed by switching between various forms of the difference 
equations, help to remove the wiggles and to obtain monotonic representations, 
without the need to introduce artificial spatial damping with its attendant error and 
uncertainty. 

(iv) Outward-travelling disturbances are allowed to disappear without trace 
through the computational boundaries. Hence there is no need to add terms 
representing artificial damping in time to obtain a steady-flow solution. Thus we 
avoid the task of ensuring that any extra damping terms do not influence the com- 
puted steady flow. Whether this is a real advantage, or only saves some operations 
per timestep, is a moot point. 

In general, difference representations of differential equations contain some 
implied damping. If they are of the same order (typically second-order) in grid size, 
one cannot argue that methods which do contain explicit artificial damping terms 
are necessarily inferior to methods which do not. 

The method to be described is explicit and uses two non-time-split spatial 
operators, each of which contains a one-step operator developed by Roe [18], to 
solve the reduced system making use of Bernoulli’s equation (which holds in steady 
flow), which we may call the Bernoulli or Euler-Bernoulli formulation. Local time- 
stepping can be used, within the limits of the Courant-Friedrichs-Lewy criterion. 
The procedure is fully set out in Section 2. In Section 3 two treatments of the boun- 
dary condition on a solid curved surface are discussed. In Section 4 some loose ends 
are tied up. In Section 5 we present a parametric study of the effects of changing 
such details as grid size on the computed results for supercritical flow past a stan- 
dard aerofoil (RAE 2822), to give some indication of the accuracy obtainable. We 
also display the ability of the program to compute a flow with an inviscid 
separation and recirculation zone, the flow at Mach number 0.6 past a circular 
cylinder. Results for the flow over a bump on a channel wall are exhibited. In 
Appendix A we set out the derivation of a suitable set of flux-difference splitting 
vectors representing the local physics as the approximate solution of a Riemann 
problem. In Appendix B we obtain characteristic variables of the Bernoulli 
formulation which are used to improve the treatment of the far-field boundary 
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conditions so that the program may be used to compute subsonic or supersonic 
flows. 

Since the writing of [lo], other authors (e.g., [II, 2, 4, 29, 321) have applied flux- 
splitting techniques to the title problem and much of this recent work has been 
reviewed by Roe [23], who remarks that it is difficult to make practical (economic) 
comparisons between fast non-flux-split codes and slower, but possibly more 
accurate, flux-split codes; probably the fast codes will be used routinely, while the 
flux-splitting codes will be needed for calibration purposes and more accurate work. 
In any case, increasing accuracy will be demanded in aerodynamic calculations as 
ilong as there is a need to find how much more can be squeezed out of civil aircraft 
(for economy) and military aircraft (for performance). This paper is a shortened 
version of Lytton [lo]. 

2. THE METHOD 

2.1. Bernoulli Formulation 

For unsteady two-dimensional inviscid fluid flow: let .‘I and J be Cartesian space 
variables, with corresponding flow velocity components u and t’; let t denote time, p 
the fluid density, and p the pressure. Then the Euler equations governing mass and 
momentum are 

In the method of [26], the differential equation governing energy per u.nit 
volume (specific energy) was also included in the set, 

where E is the sum of internal and kinetic energies: 

E= ’ - + 4 p(z4” + 2)~ 
Y-l 

However, in steady flow, the flow field satisfies Bernoulli’s equation of constant 
total enthalpy (multiplying by a factor 2 for convenience): 

2Y P - - + ~4~ + 1.1’ = H, = constant. 
Y-lp 
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So if we drop the equations involving E and instead use (.4), we obtain a system of 
equations which differs from the true Euler system for unsteady flow, but is 
mathematically equivalent to it for steady flow. (Of course, the value of p given by 
(4) is only equal to the true pressure in the steady limit.) This formulation is not 
new; it is also known as the constant-total-enthalpy system (see, e.g., [16]), but we 
prefer to call it the Bernoulli formulation. 

Equations (1) to (3) are discretized on a suitable grid, and the associated grid 
values of p, pu, and pv are advanced in suitably small time-steps, using (4) to 
obtain the pressure p as needed. In this work, a “finite-volume” method is used; we 
partition the computational domain into a number of small quadrilateral cells 
arranged in rows and columns, associating each cell with a set of values 
representing averages of physical quantities over that cell. Next, we employ two 
one-dimensional operators, one working along the rows and the other along the 
columns. In each operator, we represent the quantities, p, p, U, LI by constant values 
over the cells so that the interface between two neighbouring cells represents a flow- 
field discontinuity corresponding to a Riemann problem. (No account is taken of 
the finite length of the interface.) We compute a vector of instantaneous values of 
flux differences for mass, normal momentum, and tangential momentum across 
the interface. This vector is split into a linear combination of eigenvectors 
corresponding to signals travelling with certain characteristic velocities, and these 
eigenvectors are used to give an approximate solution of the Riemann problem for 
the interface. (In general, the exact solution of the Riemann problem requires 
iteration, but Roe has shown [17] that this non-iterative procedure is sufficiently 
accurate, in practice.) The eigenvectors from all the interfaces in a row or column 
are then combined to give mass and momentum changes in all the cells in that row 
or column. Note that the rows and the columns are treated separately. A suitable 
set of eigenvectors and characteristic velocities is given in Appendix A. 

2.2. Roe’s One-Step Operator 

As mentioned earlier, to calculate the development of the flow field in time we 
employ two split one-dimensional operators, one working along the cell rows and 
the other along the cell columns. The operators are based on Roe’s one-step 
operator, originally described in [ 181, but modified to a more easily coded form by 
Baines [19]. For the linear wave equation, 14, + au, = 0, on a uniform grid, it is 
equivalent to the two-step MacCormack-type operator also developed by Roe and 
used in the program of [26]. 

It will suffice to describe the operator for the one-dimensional non-linear scalar 
wave equation 

I 
3.f 

;+g=o, 
‘, 

(5) 

where f = f(u), with one characteristic velocity (wave velocity) given analytically 
by 

a = df/&4. (6) 
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We seek to solve Eq. (5) by time-stepping with the time interval At on a one-dimen- 
sional finite-volume grid consisting of a row of cells separated by interfaces al The 

points .Y = .Y/, for some range of values of j. Let the jth cell be bounded by ! 
interfaces at I = .yj and x = .xj+ r, so that its length is 

AXi = xi+ * -xi. (78 

Suppose that the value of u appropriate to this cell after II time-steps is u;. For 
simplicity, we shall write 14~ for 14;, and iii for u; + I. Then the operator is requned to 
advance from the data 11~ to the solution iij. 

The operator consists of two stages, one setting up a first-order solution and the 
other completing a second-order solution. The first stage is as foilows. We take rhe 
neighbouring pair of cells, the jth and (j+ I)th, separated by the interface at 

s = .-c -;+, . Interpreting f as flux, we calculate the flux difference or “contribution” 

d,+1,2 =fi+l -f,3 asi 

where .fi = .f(u, j. The suffix j + + indicates that the quantity involved is the result of 
an interaction between the jth and (j+ 1)th cells. We also compute the charac- 
teristic velocity a, + , ,2. associated with this interaction: 

.,+,,2 J+1 -JJ a 
14i+ 1 - l!;’ 

The contribution 4j + r;? is now accumulated into a store x:,, associated with the 
117 th cell, where 07 = j + 1 if a,+ ril > 0, and 177 = ,j if ai, r 1 < 0; in other words. 
d,+ 1,2 is sent to the store in the direction of propagation of a wave starting from the 
interface between the two cells (Fig. la). If the ai+, z change sign somewhere, a 
store is allowed to receive two, one, or no contributions; for instance, if n, _ 1 2 > 0 
and CZ;+ I;? < 0, the store xj receives two contributions. 

To show the direction of the argument, it is worth commenting that the contents 
of each store x, will eventually be multiplied by 3tjA.s~~ before finally being subtrac- 
ted from U, to produce lj,.. If this were done now, without further rnanip~lat~~~~ 
then for ait,,2 > 0 the scheme would read explicitly 

Uj+l =Uj+1 - -J”;,- 

which is a first-order “upwave” scheme. (We introduce this adjective in place of the 
ubiquitous “upwind.” for two reasons: 14 is not necessarily a fluid velocity, and even 
when a fluid velocity is involved, as in the more complex vector system of Euler 
equations, the wave velocity may be in the opposite direction to the “wind” 
velocity.) If we specialize to the linear wave equation on a uniform grid, the scheme 
would read 

l;,+, = l4,+ 1 - \‘(U;+ L - U.j), 
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FIG. 1. (a) First stage; (b) second stage. 

where v = a At/Ax is the Courant-Friedrichs-Lewy (Courant, or CFL, for short) 
number. 

The skeleton of the second stage is as follows. We define a local CFL number 

vj + I.‘? = aj+ 112 At 
min(A,t;, Ax,, 1)’ 

From the first stage, we store the “minor contributions” 

Pj+1/2=~(1-lvj+1!2 l)dj+J/2. 

(10) 

(11) 

These minor contributions are a central concept of the Roe one-step operator. At 
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the first stage, they can be regarded as “sitting on the fence” (interface) between the 
jth and (j + I ) th cells, until their destiny is decided; see Fig. la. 

We now consider each pair of cells (j, j + 1) in turn. We take the minor con- 
tribution 11, + 1 ,2 (on the interface) and its “upwave” ncighbour, pj + l.‘ZPsgn(n,+l,,l. If 
‘i+ I.2 >O, this is ~~-r,~; if uj+rj2 ~0, it is pjitf3,?). We insert these as arguments of 
a function B( 2, ,u) of two variables A, ,U (the choice of function will be discussed 
later j: 

B=Bll~ji+l~> P-j +!/~-sgn(u,,~:il. (2) 

This function is taken to be homogeneous and of first degree in its arguments. and 
to have the property B(k, ,I) = /I. Then we add B to the “upwave” store of the pair 
of stores xj: xj+ I) and subtract B from the other store: 

1 + r, kB. (13) 
,+l:?.r(l~2)sgn(u,+*~~i j+l’2r(l.‘?)sen(:r,+I1: 

Thus, if aj+ I;> > 0, we add B to cj and subtract it from &+ r ; if aj+ L:2 < 0, we add 
B to E./i-l and subtract it from xi, see Fig. lb. As before, if a, + l,‘Z changes sign 
somewhere, a store is allowed to receive two additive or two subtractive con- 
tributions. 

We note that in the interior of the computational space, conservation is assured 
at each stage, because the first-order contributions are always added somewhere, 
and at the second stage anything added at one place is balanced by the same 
amount subtracted from another. 

When ail the first-order and minor contributions have been assigned in this way., 
the updated values of 11~ (the solution ~2~) are calculated as already set out in words: 

1;, = llj - 

c 1 
g I. 

j 

The choice of the function B(A, p) has a considerable effect on the character of 
the method and its results. While considering these effects, following [18, 133, we 
shall restrict our attention to a uniform grid with d.xj = constant = ds, and consider 
particularly the linear wave equation, 24, + au, = 0, with constant a and V, = v = 
dt,/4x (the linear advection problem). 

If we choose /?(,I, pj = 2, we recover the Lax-Wendroff (centred) scheme for the 
linear advection problem, whether a > 0 or a < 0. If instead we choose B(J, ~1) = ,u, 
then for a >O and a<0 we recover the appropriate Warming-Beam ‘“upwn-& 
(upwave) schemes. These schemes are second-order accurate. We remark here that 
an explicit scheme, based on updates such as Eq. ( 14 j for a non-uniform grid, which 
reduces to a second-order-accurate scheme on a uniform grid, can stili be second- 
order accurate on the non-uniform grid under certain assumptions; for proof, see 
Lytton [lo]. 

However, it can be shown [lS] that each of these schemes has a bounded “corn- 
patibility zone” of input data such that the output at each point lies in the range 
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spanned by the particular interval of the input data cut by the characteristic in 
space-time from the output point. (Harten’s total-variation-diminishing (TVD) 
criterion [7] is an allied concept; see also Sweby’s flux-limiter [27] and Roe [22].) 
The boundedness of each zone is a consequence of Godunov’s theorem that, 
for general 11, a second- or higher-order algorithm with fixed coefficients cannot 
be monotonic (a useful shorthand for Harten’s adjectival phrase “monotonicity- 
preserving”: if the data 21,; is monotonic, so is the output li,). 

It is very probable that, in general, selection of a monotonic algorithm is impor- 
tant for the avoidance of “wiggles” in the computed solution, especially near discon- 
tinuities: and Godunov’s theorem does not rule out achieving this by allowing 
B(1, ,u) to vary with the data so that the coefficients are no longer fixed. There is 
considerable overlap between the compatibility zones of the Lax-Wendroff and 
Warming-Beam schemes, and a blend of these is second-order accurate if it 
represents a weighted linear combination (with weights summing to 1) of the two 
schemes, 

A blended scheme will still be second-order accurate almost everywhere if it can be 
written 

since in smooth regions of the flow we will have ,i -p = O(~X’) and the scheme is 
then a third-order perturbation of a second-order method. 

One possible scheme (which is monotonic) is to define Bin, p) as the smaller in 
absolute magnitude of 2, p: 

B(i, ,u) = minmod(& ,u). 

However, this is discontinuous when /1= -p ( #O) and might lead to spurious 
time-oscillatory behaviour in the solution. To avoid this, when sgn 1 fsgn ,u, 
B(L p) may be taken as zero, accepting the first-order solution. Lytton [lo] 
describes numerical experiments with the “Pioneer” scheme (which is continuous 
for all ratios 1 : 111) 

B(A, p)= -” 
sgnA#sgnp and lpl <IAl 

minmod(;l, ,u), otherwise. 

This scheme clearly has a larger domain of second-order accuracy. 
In practice, choices of B(I, p) biassed towards the smaller in absolute magnitude 

of 1 and ,u tend to have diffusive effects so that, in one-dimensional propagation 
problems, some initially sharp profiles are predicted to spread out over an 
increasing number of intervals and, in the case of the Euler equations, contact 
discontinuities are less cleanly captured than shockwaves. 
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Sweby and Baines have pointed out [28] that the second stage is antidiffusive in 
nature. Thus, for the linear wave equation on a uniform grid, it is found that the 
first-order scheme with B(A, /l) = 0 diffuses initially sharp profiles over several iater- 
vals, and second-order schemes sharpen the predicted profiles. This suggests that, 
within some limits, the larger we can choose B(A, p). the greater will be the antidif- 
fusive effect of the second stage. Thus, we might seek to bias the choice of B(& ri j 
towards the larger rather than the smaller (in absolute magnitude) of ilY P~J for 
instance, 

1116 IL4 sgn d = sgn p 

l~/‘/P/. sgni=sgnp i\ls; 

sgn /I f; sgn 11. 

For our explicit schemes, it is understood that 4t will always be taken small enough 
for the CFL number to lie between - 1 and 1. Then, from Roe’s study [tg] of 
compatibility regions for the linear problem, we know that the scheme ( 15 j will be 
incompatible with some data. We therefore seek to modify (15) to remove this 
defect. 

Considering again the linear problem on a uniform grid, we first take a > 0. so 
that 0 < v d 1. Then, since B(& p) is a homogeneous first-degree function of its 
arguments. on writing $I,, 1.z = 11~~ r - uI we have 

Li;*i =uj+: -ej+1.2 -tvct -13)CB($,+,,.,,. $j+I.~~-~($.j+,,2, $.j-IQjl= 

Now, for compatibility [lg] in this case we require that tii,- r should lie between U, 
and uj+,. This condition can be written 

o,li,+:-"j+1_~L-14,+1~1, 

uj - llj + , -b4+ 1.7 

Hence 

O d “+ + “(l -- ")CBC*j+ (3’2), $j + l;z)- B($j+ i 2, (i/j.. 1;2)]/$~+ 1.2 d 19 

i.e. (again making use of the properties of &,A, pi)j, 

ObV++v(l-v)[B(Y+, lj-B(l. YJ]<l, 

When a < O1 and thus -1 d v < 0, the compatibility requirement that z$ lies 
between uj and ui+ I leads to the same inequality with --?I= j LJ / in place of v. and 

j + (3/2 ) interchanged with i - ( l/2 ). 
Thus we find, for all / v 1 < 1, 
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and for this it is sufficient to demand that 

-2<B(!?f+, l)-B(1, Y-)<2. 

For the particular form (15), B( Y, , 1) and B( 1, !P-) are non-negative (since one 
of the arguments is always positive), so we choose 

B(Y+, 1)<2; B(1, (UP)<2 

which implies, for arbitrary 1, ,u, 

Where condition (16) is not met with the choice (15), we may instead take / B( as 
large as possible consistent with (16) as 

B(/1, p) = 2minmod(J, ,u). 

if 2, ,U differ by a factor of more than 2. The complete specification of B(,J ,u) then 
reads: 

If sgn ,4 # sgn p; B = 0; otherwise, 

B=2p, p/i? -c 0.5 
B= I., 0.5</l/l< 1.0 

B=,u, 1 .o < /l//1 < 2.0 (17) 

B=2A, 2.0 < ,u/a. 

The function B(A, p) defined by (17) is again continuous. In view of the bias 
towards the greater, rather than the smaller, of / 2) and ),u(, Roe has named this 
scheme “Superbee.” 

As expected, the effect is to sharpen the representations of discontinuity profiles 
and, also, to halt the diffusion process in one-dimensional problems so that after a 
few dozen time-steps there results a stable profile with an effective width which does 
not subsequently grow at all (Roe [21,22]). 

2.3. Operator Combination in Finite- lJolume Method 

The algorithm described above is now applied to each component of each eigen- 
vector, along the cell rows for the row operator LZ”, along cell columns for the 
column operator L&. To complete the description, some details follow. 

For the eigenvector splitting, at an interface, the pairs of X- and y-momentum 
components on either side are first resolved normally and tangentially to it. As two 
opposite interfaces will not in general be parallel, after the first-order stage, all 
the pairs of contributions of normal and tangential momentum are resolved back 
to x- and y-axes; this ensures that, when the functions B(l, ,u) are generated, like is 
compared with like. 
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In extending (14) to update the field in a cell Qjk, the length Axj is replaced by 
the area voljk of the cell, the fluxes having already been multiplied by the lengths of 
the interfaces across which they act. This is equivalent to replacing Axj by the 
length of a rectangular box of the same area as the cell, erected on the a.ppropriate 
interface. Corresponding to uj+ 1,.2 in (9) we have, for each component, the charac- 
teristic velocity associated with the eigenvector to which it belongs. To calculate the 
minor contributions corresponding to (1 l), we take a local CFL rmmber 
corresponding to (10) (for YJ, dropping the suffix k and letting sj+ ri2 be the length 
of the interface between Qjk and Qj+ 1,/;): 

and similarly for YK. 

= aj+ r12sl+ 1 At max(vo1,; ‘, vol,:+‘“,~,), 

For stability it is at least necessary to construct At so that neither of these values 
of the CFL number exceeds 1 in absolute magnitude. To do this, we approximate 
the minimum time taken by a disturbance to cross the cell Qjk with uniform con- 
ditions over it. We take each side in turn, of length s,, say, and, as before, imagine a 
box of length voljk/sI erected on this side; if the normal velocity into the cell is iiil, 
then, in the Bernoulli formulation, the speed of the fastest wave (if any) crossing the 
box from this side is found from Appendix A to be 

Hence, the cross-over time associated with this side is voljk/(sIc+ ). The smallest 
value over the four sides is taken as the local time-step At,k associated with Qjk. 
Then a single (global) value of At, not greater than the minimum local time-step 
over the grid, will satisfy the CFL criterion. 

The boundary conditions for YJ, TK depend on how the grid is constructed in 
the,flow domain of interest. For aerofoil calculations, we choose to surround the 
aerofoil with an O-grid, with nodes for k running from 1 (at the aerofoil surface) to 
K, + 1 (computational outer boundary) and a periodic distribution of nodes for i 
running from I (at the trailing edge, for k = 1 ), around lower and upper surfaces to 
J, and back to I. Thus there are J, columns and KL rows of cells (see Fig. 2). The 
grid is constructed by simple algebraic means; for details see Sells [26] and Lytton 
[lo]. Then the operator P” is made periodic by taking QJL,k and Q,,k to be adjacent 
cells; on the other hand, the operator YK has to deal. with boundary conditions at 
the aerofoil k = 1 (this is discussed in the next section) and at the computational 
outer boundary k = K, + 1 (a standard treatment by one-dimensional charac- 
teristics theory is set out in Appendix B). For other types of grid, such as C and H, 
the boundary conditions for 5?= and YK would be different. 
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FIG. 2. Grid notation. 

In a typical aerofoil grid, the cell size varies so that the largest cell is many times 
the size of the smallest. Then for a global time-step At, the larger cells operate at a 
far smaller CFL number than the smaller. It is possible to speed up the approach to 
steady flow by first running the program with dr replaced everywhere by the local 
time-steps dtjk; then instead of (18) we redefine the local CFL number (for YJ) as 

(19) 

which gives much larger CFL numbers for most of the cells. This device. is in 
widespread use, see, for example, [ 15, 16, 301. 

The operators can be used in two ways: time-split (fractional-step), or non-time- 
split. In a time-split sequence, U = (p, pu, pa) is completely updated by each 
operator in turn before applying the next. A symmetrical sequence is usually 
chosen, such as the “full-step fractional step” sequence [3 1 ] 

&JO.5 At) YJ(At) L$(At, P”(At) mYK(At) YJ(At) .-..Y’(At) &JO.5 At). 

There is a conceptual difficulty with boundary conditions, as the individual 
operators do not, in general, have zero effect even at steady flow, and it is usual to 
arrange that the operator which applies the aerofoil boundary condition (here YK) 
comes last. It can be expected (and is found in practice) that the local-time-step and 
global-time-step solutions are appreciably different, so after a period in local-time- 
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step mode we should switch to global-time-step mode, even though this eon- 
siderably slows down the approach to steady flow. 

In a non-time-split sequence, U is held fixed while the increments from both Y-r 
and YK are calculated and stored, and only when both together are available are 
they accumulated to U. This naturally requires more storage than a time-split 
scheme. Also the CFL numbers are for one operator by itself, and instability may 
be foreseen (and is encountered in practice) for a cell simultaneously receiving two 
sets of increments from two operators, so all timesteps must be halved. However, in 
steady flow the increments fed to a cell by =!ZK exactly balance those from $p,, the 
cells being in static equilibrium rather than the dynamic equilibrium of the time- 
split sequence; so it does not matter whether the increments are multiplied by d; or 
by dtik, and, apart from possible small differences associated with (18) or (19), we 
are on much firmer ground in accepting the local-time-step-mode steady flow. 

From the above, we might expect that the Superbee algorithm embedded in a 
non-time-split sequence would be the optimum combination; inspection of the 
results from a few test cases confirms this, but surprisingly reveals that the next best 
combination is the time-split Pioneer algorithm, which however, is typically four 
times as slow. On a 160 x 24 grid, the Superbee program can reach steady flow for a 
moderate transonic aerofoil case in around 5000 time-steps but has needed 8000 
timesteps for a difficult case. (Steady flow means here that over 80 time-steps the 
change in pressure coefficient C, is everywhere less than IO-“). 

We remark that, to obtain this performance, the preliminary calculations using a 
coarse (40 x 6) grid and medium (80 x 12) grid have been allowed to attain steady 
flow to within changes of 10e3 in C, before switching to the next finer grid. This 
turns out much better than initiating calculations on the finer grids after a fixed 
number of iterations on the coarser grids. 

3. BOUNDARY CONDITIONS ON A SOLID SURFACE 

If a side of one cell, which we may designate as cell 2, is part of a solid surface 
(wall), we have to simulate the boundary condition of zero normal velocity on tbis 
side, We imagine that the flow field continues smoothly into a flow field behind the 
wall, and we place an image cell, designated as cell 1, on the other side of the waB? 
from cell 2. With cell 2 we associate the field values pz, unZ, uT, and the pressure c-.? 
and with the image cell we associate the image held values b r i u,,~, uT,, and the 
pressure p, which is connected to these by Bernoulli’s equation (4) (Fig. 3): 

27 PI 3 Pz --++4;,+u$1=-- 
I’-lp, 

+ 22 +?A2 E H y-lp, nz T? ? (20) 

We take u,,, = -un2 so that the boundary condition on the normal velocity is 
satisfied in the sense that the mean normal velocity at the interface between cells 1 
and 2 is 

17, = 4 (unt + u,,) = 0. 
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FIG. 3. Local coordinates for typical cell interface. 

Since we still have to specify p1 and Us,, directly or otherwise, we need two more 
equations. These image field values will depend on the radius of curvature R of the 
wall. Define R to be positive if the wall is convex on the side of the real external 
flow. If IZ is a local Cartesian coordinate normal to the wall and directed into cell 2, 
see Fig. 4, then at the wall in steady flow 

A second-order approximation to this equation is 

~2 -PI =(WR)(PI 1~1 12+p2 Iu,l’), (21) 

where dn is the distance of the centroid of either cell from the interface. 
To complete the set of equations, one possibility is the very crude relation, 

uT, = uTz. Another is? to equate the entropy at the real and image cells. S. P. Fiddes 
has suggested (private communication) that the vorticity might be a better variable 
to use in this context. For steady shock-free flows with constant total enthalpy, 
Crocco’s theorem gives 

u A curl u = - @ VS, 

“2. “2* ““2, “T2. p2.p2 

n t T -I 

8 
“II,=-0 

"2 

“l,I PI-P, 

R 

FIG. 4. Real and image cells on curved boundary. 
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where @ is the absolute temperature and S is the specific entropy. Thus if 
iiS/& =0 on the surface, for two-dimensional flow, the vorticity must vanish. 
Although the two conditions are thus mathematically equivalent, they will not be 
numerically equivalent because of discretization errors, and if numerical vorticity 
were being shed into the flow at the wall it could seriously delay the approach to 
the steady flow. 

If T is a local Cartesian coordinate parallel to the interface, see Fig. 4, and zdT is 
the corresponding velocity component, the vorticity at the wail can be written 

For subcritical flow, the vorticity is zero everywhere. The vorticity at the wall can 
be expressed by the second-order approximation 

Equating this to zero gives 

“, 22) 

23 J 

This equation gives ur, immediately. We then set up an iteration cycle to satisfy 
(20) and (21) starting with the estimate p, =pz; we use (21) to update p1 and (20) 
to update p,, and repeat. The iteration converges rapidly. 

The flux-difference vector across the interface can now be computed, and the con- 
tributions to both cells can be evaluated. We remark that, at the second-order 
stage, since there is no upwave interface inside the boundary and no associated 
minor contribution, we use the minor contribution at the wall instead; this 
corresponds to putting i = p, so that B(A, p) = A. 

Note that it is not necessary to define the exact geometry of the image cell, since 
ins area enters only as a factor of ignored contributions; we only need to assume 
that its centroid lies at the same distance from the wall as that of the real ceif. 

It has been discovered that the iteration using (23) fails to converge if An/R is too 
large. Large values of AnjR can occur in the initial run with a coarse 40 x 6 grid. So 
the program has been modified to reset An/R to 0.2 if this situation is encountered. 

Downstream of a shock on an aerofoil in supercritical flow, the vorticity will not 
in general be zero. It can be calculated in principle [13] if the shock geometry is 
known, but to determine this as part of the time-stepping cycle is cumbrous. 
Instead, we have tried making the less restrictive assumption. that the vorticity will 
have the same value at the wail as it has at the centroid of the cell next to it (cell 2). 
The vorticity at the centroid of cell 2 is approximated by a formula similar to (22j, 
using the value of uT at the next outboard centroid ( uT17 say). It happens that the 
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next outboard cell (cell 3) is constructed to be the same depth as cell 2, see [26]. 
Equating these formulae and neglecting terms o[(dn/R)‘], we find 

UT, = 2li, -UT, (24) 

This expression (24) for Us,, which we may call the extrapolated-vorticity equation, 
is then used in place of the zero-vorticity equation (23). Either (23) or (24) can be 
selected as a program option. 

This idea would be useful also in a three-dimensional version of the program. We 
should need two image tangential velocity components, and a single equation 
representing the constant-entropy condition would not be sufficient to determine 
them; however, two equations involving two components of vorticity would indeed 
be sufficient. 

It has been found worthwhile to modify the calculation of p1 near the leading 
edge of the aerofoil. Equation (21) predicts a decreasing pressure along a normal as 
we approach the wall, but near a stagnation point the region in which the pressure 
decreases is very small and along the stagnation streamline the pressure in fact 
increases. To allow for this at the leading-edge, the pressure p, is calculated by 
simple extrapolation from cells 2 and 3, and, downstream of the leading edge, the 
pressure is allowed to fair smoothly from this extrapolated value back to the value 
given by (21). For details, see Lytton [lo]. 

4. MISCELLANEA 

At a great distance upstream from the aerofoil, the conditions for flow at Mach 
number A1 and incidence CY hold. At a large but finite distance, these conditions still 
hold in supersonic flow; in subsonic flow (M< I), the effect of the aerofoil can be 
represented by a “compressible vortex,” with circulation (at a great distance) r, 
which is related to the aerofoil lift coefficient C, by Oswatitsch’s theorem [12] (the 
analogue of the KuttaaJoukowski theorem for compressible flow), at any rate for 
flows without shocks: 

where c is the aerofoil chord. The current value of C, is found by integrating 
aerofoil surface pressures C, using the trapezoidal rule, at each time-step. It is then 
found that the parameter I;hpth, which is approximately the distance in chords of 
the computational outer boundary from the aerofoil, still needs to be 
large--typically of the order 10 or more-but one order of magnitude less than 
when the terms representing the compressible vortex are ignored. 

If the aerofoil is symmetrical and at zero incidence, the program is arranged to 
compute only half the flow field, with some extra bits needed on the symmetry axis, 
and after each operator call the flow field is symmetrized. 
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In addition to saving about half the computational time on symmetrical cases, 
this device also has a possible advantage for supercritical flows with strong shocks 
Because of round-off errors, a computation over the entire field may not be 
absolutely symmetrical, even though the algorithm and the grid are symmetrical. 
Therefore the shock strength and the total head at the trailing edge may be slightly 
different on the upper and lower surfaces. If the total head is greater on one surface, 
then the dividing streamline should leave the trailing edge in a direction parallel to 
that surface. Then the computation may settle down to an asymmetrical steady flow 
of this kind or it may oscillate between two such flows which are reflections of each 
other in the symmetry axis. It may even be the case that the symmetrical flow, with 
the dividing streamline leaving the trailing edge along its angle bisector, is unstable 
in nature. Enforcing symmetry avoids possible trouble of this kind. 

Salas [24] has reported that, for supercritical flow over a circular cylinder, 
several workers, computing the whole flow field, obtained oscillations instead of 
convergence to a steady flow. Although he states that the oscillations appear to be 
sustained by reflections between upper and lower shock waves, no further details 
2~ given. As the predicted evolution would depend on the equations and on the 
aigorithms used to solve them, and as the present method is not time-accurate, this 
possibility has not been explored. 

The drag coefficient C, is also calculated by integrating C, over the aerofoil. 
However, as there is a well-known difficulty with the accuracy of a small difference 
of large numbers, the program also includes an evaluation of Co as an integral 
along any shocks in supercritical flow. For details, see Lytton [IO]. 

5. RESJLTS 

5.1. Aerqfoil in Free Air 

We present results for the RAE 2822 section at Mach number M=0.75 and 
incidence CI = 3G. This test case was considered at the GAMM workshop [l6] at 
Stockholm in 1979, and again by the AGARD Fluid Dynamics Panel [33] in 
October 1983. It is a supercritical case, with a supersonic region on the upper sur- 
face, extending to just under 1.1 chords from the aerofoil, and terminating with a 
peak suction ( -C,) of just under 1.6 at x/c + 0.75. In this comparative study, the 
steady-how result from the Superbee program, using the grid described in [is] and 
of which regional details are shown in Figs. 5-7, with J, = 160, K, = 24, and grid 
field depth Fdpth = 16.0 (chords), with the extrapolated-vorticity boundary con- 
dition option, Eq. (24), has been taken as a standard and the effect considered of 
changing one detail at a time. To save space, we confine ourselves to verbal notes; 
fuller descriptions and figures may be found in Lytton [IO]. 

The standard result is first compared with the result from the ‘“Pioneer” 
algorithm. On the lower surface, the two results agree to within graphical accuracy; 
on the upper surface, the Superbee result picks up a little more suction ahead of the 
shock, and a little less behind it, giving a 0.2% increase in C, (1.0971 against 
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FIG. 5. Grid around aerofoil RAE 2822. 

1.0948, see also the first and last lines of Table I, which is a summary to which we 
shall refer throughout this section). The shock is stronger (about 0.02 in C,) and 
more sharply defined by Superbee than by the Pioneer algorithm. Both under- 
predict the Rankine-Hugoniot shock jump (calculated using the respective output 
values of C, ahead of the shock) by about 0.03 in C,. 

We may deline a function 1 of the normalised entropy by 

PIPX 1. ___- 
‘= (pid 

x should be zero ahead of the shock and on the shock-free lower surface, and 
departures from this value constitute numerical error which gives some impression 
of the internal accuracy of the program. (Denton [3] explains very clearly why 
errors must be expected in discretization programs which do not solve for the 
entropy explicitly.) In this case, downstream of the shock, the two programs give 
similar values (corresponding roughly to the Rankine-Hugoniot rise through the 
shock), and on much of the lower surface also the values are similar, of the order 
0.002; however, upstream of the shock and near the leading edge, the Superbee 
program exhibits an average 50 o/o smaller error (of the order 0.005). 

Table I also shows how the value of Co, calculated by integrating this jump as 
above, compares with the value found by integration of C, along the aerofoil con- 
tour. For the Pioneer program, the two results, shown on the last line, differ by 
almost 100 counts (1 count = lo-“), giving a difference of between 20% and 25%; 

FIG. 6. Grid in leading-edge region. 
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FIG. 7. Grid in trailing-edge region. 

for the Superbee program, the results, shown on the first line, differ by only nine 
counts, giving a difference of less than 2%. This further strengthens our confidence 
in the increased accuracy of the new program. The normalised values (lF= 
J u . c/s/) U, c) shown in the last two columns are found by integrating along the 
aerofoil surface (the surface value of u is taken as the mean of the values in the real 
and image cells) and along the contour formed by joining the centroids of the cells 
in the first row, next to the aerofoil; one reason why they should not agree precisely 
is that in principle they should differ by the vorticity generated at the shock and 
contained between the two contours. (This remark holds for all the results reported 
in this section and displayed in Table I.) 

Next, the standard result is compared with the result from the Superbee program 
applied on the Q-grid of Sells [26], which has the same parameters and same 
distribution of cells on the aerofoil surface, but, further outboard, some rows are 
kidney-shaped and some cells relatively sheared. The C, distribution is changed 
almost imperceptibly. The Sells grid gives a slight increase in the error x ahead of 

TABLE I 

Non-standard runs for RAE 2822, M= 0.75, r = 3.0 

CD Gamma 

CL CM 
First 

Contour Shock Surface UJW 

Standard 1.0971 -0.1894 0.6461 0.0452 0.5149 0.5225 
Grid as Sells [26] 1.0894 -0.1876 0.0458 0.0443 0.4954 0.5051 

320 x 48 1.0923 -0.1869 0.0449 0.0425 0.5069 0.5130 
156x24 1.0983 -0.1901 0.0464 0.0446 0.5115 0.5233 
F ciprh = 8.0 1.0903 0.0453 0.0430 
F dpth = 32.0 1.1031 -0.1909 0.0465 0.0458 0.521: 3.5288 
Zero-vorticity bit 1.0951 -0.1885 0.0455 0.0453 0.5186 0.5181 
p = p,= downstream 1.0786 0.0468 0.0417 
Pioneer program 1.0948 -0.1932 0.0479 0.0385 0.5159 0.5205 
Sells 1261 (Stockholm 1979) 1.0738 0.0434 0.0376 

!Jcrcre. Standard data: 160 x 24 grid, Fdpth = 16.0 (chords). 
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the shock, which is overshadowed by a large increase of around 300% in the 
average error near the leading edge on the lower surface. This must be attributed to 
the outboard grid differences. The greatest difference between the quantities 
exhibited in Table I is in the two values quoted for the circulation. The source of 
this difference is not known. 

We now consider the effect of grid refinement by doubling the number of points 
in each direction (Jr = 320, KL = 48). The C, distribution is unaltered except for a 
slight forward movement of the shock, producing a 0.4% decrease in C, (Table I). 
The error x is reduced by an average of 70% on the lower surface by the line grid, 
but ahead of the shock on the upper surface it shows an anomalous and dismaying 
increase of 25% on average. This is reflected in the degree of agreement between 
values of C, (computed from the contour and from the shock integrals) shown in 
Table I, which is now worse than that for the standard case; the two values now dif- 
fer by 24 counts. This is completely contrary to normal experience when a grid is 
relined, and the effect is not understood. No clue is provided by inspection of the 
fine grid, which is generally well behaved, particularly near the leading edge, where 
errors in entropy might arise and be propagated. 

One may enquire whether the position of the grid points on the aerofoil, in par- 
ticular near the shockwave, can affect the results obtained. An easy way to check 
this is to change Jr slightly, and we have tried taking JL = 156. With this value, the 
computing points are nearly the same at X/C = 0, 0.5, and 1, but interlace between 
these stations and, in particular, near the shock. However, graphically the C, dis- 
tribution is virtually unchanged; the overall small changes being again displayed in 
Table I. The only noticeable change in x occurs at the shock, where the spike is 
much smaller for JL = 156 then for JL = 160. This must be because the shock lies 
closer to an interface of the grid with J, = 156; if the shock were actually to coin- 
cide with an interface, the program would treat the shock precisely (Roe’s Property 
U) and the spike would disappear completely. 

To demonstrate the effect of the grid field depth Fdpth, we have computed 
solutions with Fdpth halved to 8.0, and doubled to 32.0. The three curves for C, 
coincide except for a barely perceptible change in shock position. Table I shows a 
small increase in lift C, with increasing Fdpth (0.6% from 8 to 16, 0.5% from 16 to 
32). The values of C, obtained by both methods agree much better for I;dpth = 16 
and 32 than for Fdpth = 8; indeed, the discrepancy for this case is similar to that for 
the fine 320 x 48 grid. For this grid it might have been better to take Fdpth = 32, 
though this would have been contrary to the spirit of this parametric study. On the 
lower surface the overall error x was found to increase slightly with Fdpth but, on 
the upper surface, it decreases steadily and much more rapidly (about 20% each 
time), supporting the inference that the larger value of F,,pt,, tends to give the more 
accurate result. 

We have run a version of the program in which on the outflow part of the outer 
boundary the velocity components were calculated allowing for the “compressible 
vortex,” but the pressure was taken constant and equal to the free-stream pressure 
pit. Table I shows that this produces the worst effect on CL of all the changes 
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investigated, an error of 2%; also, there is a 10% discrepancy between the two 
computed values of C,. This shortfall in C, is not as bad as the effect of neglecting 
the “‘compressible vortex” altogether in the outer boundary condition, which can 
produce a shortfall of the order of 10% in some cases (not discussed here), but it is 
clearly advisable to compute the pressure, as well as the velocity components, 
taking account of the “compressible vortex.” In the author’s experience, other codes 
which neglect this effect also underestimate the lift. 

The results quoted at Stockholm [16] from the program of Sells [26] are also 
shown in Table I. The discrepancy in the two computed values of Co is similar to 
that from the Pioneer program. In CL there is a shortfall of 2.1%. The change of 
grid may have contributed a similar effect (0.7%) to that quoted above; the author 
is currently unable to check what value of FdFth was used, but the value was 
probably around 8.0 which might have added a further 0.6%, leaving 0.8% to be 
accounted for by other effects. The new program appears to score over that of Sells 
[26] for accuracy as well as speed. 

The effect of employing the zero-vorticity boundary condition (23), instead of 
(24) is again a negligible difference in C, distribution, and (on the upper surface 
only) a slightly bigger (10% overall) error level in x which is carried through the 
shock so that the computed entropy jump remains the same. Table I shows differen- 
ces of 0.2% in CL, six drag counts in C, computed from the contour integral, and 
one drag count when computed from the shock integral. With the zero-vorticity 
boundary condition the values of C, computed by the two methods agree eiietl 
better, differing by only two drag counts. The quoted values of r also agree more 
closely, but this must be discounted since, as mentioned above, they should not 
agree exactly. 

In Fig. 8 this C, distribution is compared with that due to Schmidt, taken from 
the AGARD comparisons [33] which have recently become available. Schmidt 
used 320 points on the aerofoil surface; we plot every point in the shock region 
(and every second point elsewhere). The shock is defined over six points by 
Schmidt’s method, over only three (marked by crosses) by the Superbee method; 
however, Schmidt obtains a shock pressure recovery nearer to the 
Rankine-Hugoniot value (marked as R-H) and hence a gain of about 1% in lift 
C,, Despite small oscillations in x in the shock region, Schmidt also has a far lower 
overall error (magnified 100 times in Fig. 9) than the Superbee method, and this 
accounts for the difference in C,, a decrease of 7 drag counts. The 320 x 48 Super- 
bee result in Table I also suggests that the computed value of drag ought to 
decrease as the grid is refined. 

5.2. Circular Cylinder at A4 = 0.6 

Because of the current interest in separated flows emerging from numerical 
solutions of the Euler equations, we present results obtained using the Super-bee 
program for a circular cylinder at Mach number 0.6. The computational grid had 
160 radial lines equispaced round the cylinder and 24 cell rows out to eight cylinder 
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FIG. 8. Standard pressure distributions on RAE 2822 section. 

diameters. The computations were started from uniform flow through a gradually- 
solidified porous boundary; another run starting from different initial conditions 
indicates that the steady flow computed by this program is in fact independent of 
the starting conditions. 

The computed pressure distribution on the cylinder is shown in Fig. 10, and the 
entropy function 1 in Fig. 11. The Rankine-Hugoniot jumps through the shock are 
closely reproduced, though the jump in C, is a little too large and that in the 
entropy is somewhat too small; these features are probably exacerbated by the 
entropy error upstream of the shock, which is much larger than that encountered 
for typical aerofoils. 

The second maximum in suction near the rear stagnation point in Fig. 10 arises 
because a region (bubble) of recirculating flow is computed by the program. From 
the detailed output (not shown), the minimum total pressure ratio, pi/p,, (which is 
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FIG. 9. Computed entropy distributions on RAE 2822 section. 

(I + x) -2s in terms of the entropy function) is calculated as 0.621 in the bubble. A 
similar bubble for transonic flow has been found by Salas [24] and other workers 
in results presented at a workshop at NASA Langley Research Center in September 
1981. Figure 12 shows some lines of constant stream-function $ (streamlines) plot- 
ted downstream of the cylinder; I,+ is taken as 0 on the surface, the dotted lines show 
the rest of the iocus $ = 0, i.e., the rear stagnation streamline on the symmetry axis, 
and two separation streamlines bounding the recirculating bubble. The streamlines 
are at equal intervals in +. The only plot shown for this case in [24] is a streamline 
piot of Salas’ result, with the separation streamline at 8 = 1121~ (measured from the 
forward symmetry axis), compared with 0 = 132” from Fig. 12, and the streamlines 
to about one and a half diameters downstream of the rear stagnation point, stated 
as “possibly extending to infinity,” whereas Fig. 12 shows the bubble extending 2.44 
diameters downstream of the rear stagnation point. The same plot in [24] shows 
the sonic region extending from 9 = 60.0” to B = 98.5” along the cylmder and out- 
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FIG. 10. Circular cylinder. 

wards to 0.23 diameters from it. Figure 13 shows the distribution of the local Mach 
number from the present calculation; the sonic region extends on the surface from 
tI= 60.0” to 102.4”, and outwards to 0.36 diameters from the cylinder; thus it is 
slightly larger than the sonic region computed by Salas [24]. 

5.3. Bump on Chunnel Wall 

Another test case considered at the GAMM workshop [16] at Stockholm in 
1979 was a 4.2% thick circular-arc bump on one wall of a channel of width 2.073 
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FIG. 11. Entropy distribution on circular cylinder. 

FIG. 12. Streamlines: Circular cylinder, M = 0.6 
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FIG. 13. Isomachs: Circular cylinder, M = 0.6. 

bump chords. The ratio of static downstream pressure to total upstream pressure 
was specified as 0.623512, corresponding to M=0.85 in isentropic flow. Par- 
ticipants were directed to employ computational boundaries 2.0 bump chords 
upstream and 3.0 bump chords downstream, of the maximum-thickness point of the 
bump. 

The problem is equivalent to a symmetrical, 8.4% thick circular-arc aerofoil, 
symmetrically located 2.073 chords from either wall of a wind tunnel. The work is 
not doubled, as we can still take advantage of symmetry in the program. 

Figure 14 shows the pressure distribution on the bump as calculated by the 
present method and by the Euler methods of Lerat and Sides [9] (LS), Veuillot 
and Viviand [30] (VV), and Rizzi [ 151, taken from the privately circulated book 
of results submitted to the GAMM workshop. All four methods give the foot of the 
shock in the same place, at about X/C = 0.88, but the top of the shock is predicted in 
slightly different positions; thus the present method gives the steepest and sharpest 
shock. Rizzi’s result shows the next steepest shock, but with a “wiggle” in front of it; 
the shock from the VV method is clean but spread a little more, and that from the 
LS method is spread considerably with wiggles both in front and behind the shock. 
From about 10% chord to the shock, the VV method predicts slightly higher suc- 
tion than the other three methods, which agree to graphical accuracy. All methods 
agree over the last 7% of the chord. 

Iso-Mach contour (M,) plots at intervals of 0.025 in M, are quoted for the LS 
and VV methods in the book of results, and Fig. 15 shows the plot obtained by the 
present method, with the contours for Ml =0.8, 0.85, and 1.0 according to LS and 
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FIG. 14. Pressure distribution on 4.2% thick circular-arc bump in channel, width 2.073 chords. 
hi = F.85. 

VV traced in. For M, = 0.8 the LS and present methods agree upstream of the 
bump, but downstream of it the LS contour is thinner and longer than the other 
two; the VV contour lies between those from the LS and present methods. For the 
higher local Mach numbers the predicted contours spread out progressively; the 
slight spreading of the upstream contours with MI = 0.85 is shown, and here the ES 
contour lies between the other two. The downstream contours coincide for about 
half a chord downstream of the trailing edge, then the LS and present-method con- 
tours continue into the exit flow while the VV contour runs into the opposite wall. 
This is presumably a consequence of the formulations of the downstream boundary 
conditions in the three methods. The sonic fine from the present method extends 
somewhat further into the channel than those from the VV and LS methods, 
though these lines all start from the same point on the bump; this w-ould corres- 
pond to the greater peak suction predicted by the present method on the bump in 
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1.0, others 

FIG. 15. Isomach lines around 4.2% thick circular-arc bump in channel, width 2.073 chords, 
M= 0.85. 

Fig. 14. (We note in passing that choked flow is not predicted by any method.) 
There are other variations, not shown, between all three methods and, in the super- 
sonic region, the LS contours develop wiggles as the shock is approached, 
corresponding to the wiggles in the pressure distribution in Fig. 14. 

6. CONCLUSIONS 

A particular form (“Superbee”) of Roe’s one-step method has been coded into a 
method for solving the Euler equations for steady inviscid, subsonic or supersonic, 
two-dimensional flow. The method is explicit and uses non-time-split spatial 
operators, with which accurate results can be obtained in local-time-step mode. 

The method has been checked for consistency by applying it to a single test 
problem (RAE2822 aerofoil, Mach number 0.75, incidence 3”) and by studying the 
effect of varying some of the parameters of the code. These checks suggest that a 
160 x 24 grid, extending to 16 chords out from the aerofoil, will yield results 
satisfactory for most purposes, which can be taken as standards for accuracy. 

With the present method it is also possible to calculate flows with inviscid 
separation and recirculating bubbles. This is demonstrated for a circular cylinder at 
Mach number 0.6. 

In principle, the method can be extended to three-dimensional flows. All that is 
needed is a simple algorithm to generate a grid of hexahedral cells, the addition of a 
third operator, and modifications to include surface slip discontinuities. In practice, 
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there are drawbacks. It may be questioned whether applying split one-dimensional 
operators to truly three-dimensional propagation can be sufftciently accurate. 
Further, at the present time of writing, a competitive method in more than one 
dimension should be capable of enhancement by such means as code vectorization, 
multigrid, and/or conversion to implicit mode; the author has not succeeded in 
implementing any of these. Again, it is now a moot point whether finite-volume or 
finite-difference methods deal better with the twin aspects of accurate flux (or flux- 
difference) representation in smooth and in discontinuous flow regions. Consequen- 
tly, this description is presented chiefly for its historical interest in. the development 
of a method. 

APPENDIX -4: EIGENVECTORS AND COEFFICIENTS FOR 
FLUX-DIFFERENCE SPLITTING IN BERNOULLI FORMULATION 

Suppose that in some region of the computing domain the flow field is divided by 
a straight-line discontinuity (interface) into two uniform states, one denoted by 
suffix L with p=pL7 u=uL, v=vL, and the other denoted by suffix R with p = pR, 
u=uR, v=vR. The problem of determining how disturbances spread from the 
interface is the Riemann problem. We take local Cartesian axes (n, T) normal and 
parallel to the interface, and we introduce the normal and tangential velocity 
components 

u, = un” + LVP, L(T = -uflJ’ + on” 

where (n”, n’) are the direction cosines of the n-axis in (x7 y) coordinates. We a.lso 
define the normal momentum component m, = pun, and the tangential momentum 
component m T = ~2.4 T, 

The flow field is locally independent of T, i.e. a/aT=O. For continuous flow, 
Eq. ( 1) to (3) in (n, T) coordinates become 

where U = (p, m,,, m,)’ is the column vector of primary unknowns and 

F = F(U) = (m,, p + m,,u,,, m+,)’ = (F!, F,, F3 j’ 

is the column vector of flux quantities. 
The system can also be written 

where A is the Jacobian matrix [dF/XJ]. The matrix A relates the temporal rate of 
change of U to its spatial rate of change. It can be shown that the eigenvectors of A 
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correspond to slip discontinuities and to longitudinal (sound) waves travelling 
upstream and downstream, and the eigenvalues of A are the respective velocities of 
these disturbances. 

NOW consider the case where U, and UR are separated by a shock. Let us write 

AP=YR --Pt, 

and other differences similarly. Then, from the equations of conservation of mass, 
normal momentum, and tangential momentum we can derive, 

s Ap = Am, (A.11 

s Am,, = A(p + puz) = A(p + m,qt) (A.21 

s Am. = A(pu,u,) = A(m+,), 

where s is a scalar quantity equal to the shock velocity. In vector form, 

(‘4.3) 

sAU=AF. (A.4) 
Equation (A.4) now relates the temporal change dU in U to its spatial variation 
expressed as AF. 

Particular Riemann problems are: the propagation of shock waves, slip discon- 
tinuities, and the initial expansion of rarefaction waves. In this last problem, we are 
not particularly interested in the fine structure of the expansion fan in space-time 
coordinates but only in a representative average speed. The solution to each of 
these problems can be represented exactly in the form (A.4). 

However, the exact solution to the general Riemann problem requires iteration, 
so we seek an approximate solution. This takes the form of an identification of 
three components of the initial spatial variation (flux difference), related to tem- 
poral changes in U in a manner similar to Eq. (A.4), together with the speeds at 
which these components propagate. Just as infinitesimal disturbances, in the con- 
tinuous case, correspond to eigenvectors of the Jacobian matrix A, so here these 
three components can conveniently be thought of as the eigenvectors of some 
matrix 2 and the speeds as the associated eigenvalues. The matrix 2 would play the 
same role in the discontinuous case as the matrix A in the continuous case, i.e., to 
relate the temporal change in U to its spatial variation. In a way to be described 
below, the matrix a is now chosen to relate AU to AF: 

(i) AF=A” AU. 

We see that, in the special cases represented by Equation (A.4), A” dU = s AU so 
that s is an eigenvalue of A‘ and dU (or AF) is an eigenvector associated with s. 
Thus, in these special cases, by computing s we recover the exact solution of the 
Riemann problem (because the eigenvectors of A” will be constructed to be indepen- 
dent). 

The matrix A” must depend on UL and U,, and it must go over to A in the limit 
as the strength of the discontinuity vanishes: 

(ii) If UL -+ UR = U then 2 + A(U). 
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This will ensure that the behaviour of the calculated solution is compatible with 
that of continuous flow. The properties (i) and (ii), along with the independence of 
the eigenvectors of ;i, together comprise what Roe has called [17] “‘Property U.” 

We now describe a method of calculating eigenvectors and eigenvalues of one 
possible choice of matrix A”. Let us denote arithmetic averages by overbars, for 
instance, 

P = t (PL + Pd. 

From the definitions of m,, and mT, we have 

Am,, = fi Au, + c Ap (AS) 

AmT=pAu,+TTAp. fA~6) 

We can similarly expand the product terms in Eq. (A.1 j to (A.3). The use of these 
equations wilf ensure that the important consequence of property (i) holds, i.e.: that 
shocks are correctly represented. Writing 

S=S-u, 

and using (A.5) and (A.6), Eq. (A.l) to (A.3) can be written 

gAp=p Au, (A.7) 

Z Am, = Ap + m, Al;, (AX) 

FAm.=F.Au,,. (A.9) 

Multiplying Bernoulli’s equation (4) by p and differencing between states U, and 
U,, we have 

22’ 
~Ap+~Au,,+~Anz,+~.Au.+~~Atn.=H,Ap. 
y-1 

(AIO) 

The matrix A’ could be calculated explicitly by eliminating Au,, Au,, Ap from 

Eq. (A.5) to (A.lO), and the eigenvectors could then be found from the explicit 
form. However, only the eigenvectors and eigenvalues are required, and these can 
be found directly, without calculating A at all. 

One eigenvalue corresponds to the propagation velocity of a slip discontinuity: 

Writing 

sg =u,. 

4 = mrlp, 

the corresponding slip eigenvector can be written 

WJh = CAP, Am,, Am.& 

= [q +G, ii;;(q +T.G,), H2 - “t, + qFJ’~ jA.11) 
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The longitudinal eigenvectors can be written 

(AU), = (4, Am,,, Am,)‘, = (1, sk, q)‘- 

corresponding to characteristic velocities 

(A.12) 

where 
Sk =i;i;-p* p2+((y-1)/2y)(Hz-~iT;;‘-q”), 

3y-l- y+lnl, 

p=4vun --- 4Y p’ 

We assign coefficients c(~, x2, c(~ to each eigenvector so that 

(A.13) 

a,(AU)+ + xz(AU)- + a3(AU), = AF, 

where AF = (AFI, AF,, AF,)’ is the vector of the right sides of (A.l) to (A.3 j. We 
find 

a3 = (AF, -q AF,)/(H, -x2 - q2) (A. 14) 

and then 

cI1 = 
[AF3-cr,‘ii;;(q+TQ]-[AF, -cr,(q+iT~)]s- (A.15) 

S+ --s- 

c12 = [AFi - ~&I + WI s+ - CAF, - cr,zi;;(q + 77f)j 
S+ --s- 

(A.16) 

In the limit of continuous flow, as U, -+ U,, the slip eigenvector (A.11) 
corresponding to the characteristic velocity cO = u,~, becomes 

The longitudinal characteristic velocities become 

(A.18) 

and the longitudinal eigenvectors (A.12) become 

(AU), -+ (1, c* 3 UT)‘. (A.19) 

It can be verified directly that these are indeed the eigenvectors and eigenvalues of 
the matrix A arising from Eqs. (1) to (3) in (n, T) coordinates, along with the 
Bernoulli equation (4). This is in accord with Roe’s property U (ii), mentioned 
earlier in this appendix. 
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APPENDIX B: 
THE CHARACTERISTIC VARIABLES OF THE EULER-BERNOULLI FORMULATION AND 

THEIR APPLICATION TO FAR-FIELD BOUNDARY CONDITIONS 

Consider a locally one-dimensional but otherwise arbitrary infinitesimal distur- 
bance from some reference state in a flow governed by the Euler-Bernoulli 
equations. As in Appendix A, we take local Cartesian axes (n, T) with n in the 
direction of the disturbance, so that locally the flow does not vary in the T 
direction. 

In general, the non-uniform flow will give rise to longitudinal and slip waves. In 
the limit of small disturbances, the velocities of longitudinal waves are given by 
(A.18) of Appendix A, and the form of the corresponding eigenvectors giving the 
appropriate combination of p, pun, and puT is given by Eq. (A.19). Also the form of 
the eigenvector corresponding to propagation of a slip discontinuity is given by 
(A.17). We take some typical neighbouring state as a reference state, and denote 
reference conditions by a suffix 0. For convenience (in this appendix only), we 
denote the reference velocities, given by (A.18), as (c, j. = LX and (c- )0 = fi. Then, 
along a characteristic n - at = const. passing through a point Q, the characteristic 
relation connecting, pT ~4,~) zdT is found to be 

where 

Similarly, along a characteristic y1- /?t = const. passing through a point R, we find 

P[I(U, - u)Ro - (+ -Us,,) uTo(~no -)I 

= PRC(%z, - ax)Ro - (uTR - urJ UT&U,, -cc)]. (B.2) 

And along a characteristic n - ~,,~t = const. passing through a point S. we get 

P(Ui- - UTJ = Psbr, - UT(). il3.3; 

The left-hand sides of Eq. (B.l) to (B.3) are characteristic variables of t 
linearized Euler-Bernoulli formulation. 

We remark that, from (A.18) 

Hence, when M& < ypo/po, so that in an ordinary Euler formulation the flow would 
be regarded as subsonic, c$ < 0 so that CI and p have opposite signs (we take o! > 0, 
/I < 0) and the flow would also be regarded as subsonic in the Euler-Bernoulli for- 
mulation; while if z& > ypo/po, then LX, p, and u,, all have the same sign and the 
flow would be regarded as supersonic in both formulations. Thus the wave- 
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propagation directions are the same in the two formulations, allowing for the fact 
that the Euler formulation has two characteristics with the velocity +,. 

The cells in the computational grid are numbered along the columns so that in 
column j the outermost cell is designated by QK,. We imagine, just outside this 
cell, a fictitious (dummy) cell Q.i,KL + , with the sole function of holding boundary 
values of the field quantities; neither the size nor the shape of this fictitious cell is 
needed. In earlier work these boundary values were set directly to far-field values, 
calculated (for subsonic free-stream flow) by combining the free-stream values with 
the asymptotic values representing a “compressible vortex.” In the present work, we 
still compute these far-field values, but at computational outer boundaries with sub- 
sonic outflow we attempt to make the boundary values (assigned to the fictitious 
cells) compatible with the far-field values and with the values assigned to the outer 
cell Qj,KL y by using the characteristic relations (B.2) to (B.4). 

We first dispose of the case of supersonic flow normal to the outer boundary. For 
supersonic inflow, we set the boundary values equal to the free-stream values (no 
‘%ompressible vortex” exists for this case). This corresponds to all three charac- 
teristic variables propagating into the fictitious cell from outside the computational 
domain. For supersonic outflow, it is convenient to set the boundary values equal 
to the values currently appropriate to the outer cell Qj,KL; this corresponds to all 
three characteristic variables propagating into the fictitious cell from inside the 
computational domain. 

We now consider the case of a subsonic outer boundary. Let n be directed out of 
the computational domain, so that at an inflow (upstream) boundary ul10 < 0, and 
at an outflow (downstream) boundary unO > 0, the characteristic relation (B.3) 
corresponding to disturbances travelling respectively into and out of the com- 
putational domain with speed F u,,. For either inflow or outflow, with b < 0 < CI, 
the characteristic relation (B.l) corresponds to disturbances travelling into the com- 
putational domain with speed CI, so in (B.l) we take suffix Q to denote values 
appropriate to the outer cell Qj,KL; the characteristic relation (B.2) corresponds to 
disturbances travelling into the computational domain with speed (-p), so in (B.2) 
we let suffix R denote far-field values. The reference conditions (denoted by suffix 0) 
are taken as upstream conditions (suffix R for unO < 0, suffix Q for unO > 0). In sub- 
sonic flow it appears to make little difference to computed results which of these 
two sets is chosen as the reference set, but in supersonic flow the upstream set is 
appropriate, because the downstream set would violate the law of forbidden signals. 

Since in general u,, is different from both CI and p, in the characteristic relation 
(B.3) the values of p and uT at S are taken intermediate between those at Q and R. 
We think of Q, S, and R as being separated from the fictitious cell by directed dis- 
tanes proportional to G(, u,~, fl, respectively, and interpolate linearly between Q and 
R, thus 

and similarly for uT,. We now have all we need to solve (B.l-B.3) for p, u,, and uT. 
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it is curious that in general the solution of Eq. (B.l) to (B.3) may not be 
monotonic in all variables as we proceed from Q via the fictitious cell to R. To see 
this, take the special case uT = ure = uTR = llrS = Use ==constant. (B.3) is 
automatically satisfied. (B.l j gives 

~(4, -Pi = ~~(4~~ - PI 

whence 

and (B.2) gives 

whence 

Hence 

(PQ’,q - P”,)(Pu, - pR%& = @(PQ - pj(p - PR) 

Thus, if p is monotonic so that (pe - p)(p - pR) > 0 then, since cx S- 0 and j3 -C 0, pu, 
cannot lie between pQ&,g and PR%,y Hence pu,, is not monotonic. 

This analysis does not prove that U, is not itself monotonic, but if we repeat it 
using the dependent variable set p, u,~, and uy (instead of p, pun, and pu,), w-e find 
that u,, is indeed not monotonic. 

If the quantities involved in this characteristic analysis are output during a 
computation as a check, some non-monotonic behaviour is indeed found which is 
puzzling unless one knows, as above, that it is bound to occur. 

Actually, similar consequences follow for other systems of equations, such as the 
full Euler equations, which possess characteristic relations symmetrical in two wave 
speeds of opposite sign. Thus the above proof sounds a warning for a wide range of 
applications of one-dimensional boundary conditions based on characteristics or 
Riemann variables. 

For a subsonic outflow boundary, particularly downstream of shocks, the use of 
far-field values to give state R in (B.2) may be questioned. We may instead 
prescribe the downstream pressure p = p R, assuming implicitly that this quantity is 
less likely to be in error than the other field variables. Bernoulli’s equation then 
gives another relation to use in place of (B.2) when solving for B, u,, and uT. 

The condition of constant pressure p = px (free-stream value) on the 
downstream boundary is widely used [ 161 and is also suitable for the computation 
of wind-tunnel flows. However, for best results, the prescribed downstream pressure 
pR should not simply be set equal to the free-stream pressure, but should be 
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calculated including the contribution from the compressible vortex (C. M. Albone, 
private communication). We compute pR using Bernoulli’s equation and the 
asymptotic forms of p, U, v [lo]. For a typical case with positive lift CL and cir- 
culation r, this yields a pressure slightly less than pin on the upper part of the 
downstream boundary and slightly greater on the lower part, so that the flow 
encounters less resistance over the upper surface and greater over the lower. The 
pressure is reduced on the upper surface and increased on the lower surface, and a 
slight increase in C, results. This gives better agreement for lifting subcritical 
sections, for which C, can be calculated by other methods. Also, for the test case 
studied in Section 5.1, Table I shows a gain in accuracy of 2% in CL by including 
the compressible vortex in the calculation of pR, a gain which would otherwise have 
to be obtained using a grid with an increased value of Fdpth and more rows of cells 
away from the aerofoil. 
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